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ANALYTICAL SOLUTION OF ONE-DIMENSIONAL BAY 
FORCED BY SEA BREEZE 

Nicholas C. Kraus1, M.ASCE, and Adele Militello2 

 
ABSTRACT:  This paper introduces a closed-form analytical solution of the 
one-dimensional (1D), depth-averaged linearized momentum and continuity 
equations that incorporates linear bottom friction and the non-linear wind 
stress.  The solution describes wind-forced motion in a 1D basin with 
horizontal bottom as governed by water depth, basin length, bottom friction 
coefficient, wind speed, and fundamental frequency of an oscillatory wind.  The 
solution displays in compact form general behavior and dependencies of the 
physical processes, including generation of wind-induced harmonics of the 
forcing motion, damping, and resonance.  The solution can serve as a 
benchmark test for numerical models of the shallow-water equations, as well as 
provide estimates of wind-induced motion in enclosed water bodies.   

 
INTRODUCTION 

 The water of many bays, estuaries, harbors, lakes, and reservoirs is subjected to forcing 
associated with a periodic or quasi-periodic wind.  Such forcing can be the sea breeze, 
which has solar diurnal periodicity, or the wind associated with passage of seasonal weather 
fronts with periods typically varying between 3 and 5 days.  The leading-order responses of 
an enclosed body to a steady wind – set-up, set-down, mean current, and recirculating 
current – are well known (e.g., Ippen and Harleman 1966).  Lesser known are the 
harmonics induced to the water body by a periodic wind.  Militello and Kraus (2001) 
classified these as forced harmonics for motion generated directly by the non-linear wind 
stress W W  (W = component of wind speed), in contrast to response harmonics generated 
within the water body through interactions contained in the various other non-linear terms 
in the equations of motion.   
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 In warm climates in particular, sea breeze can induce substantial diurnal motion in 
water bodies.  Because wind forcing is a quadratic function of its speed, response 
harmonics generated by sea breeze are present in the water level and current, in addition to 
the fundamental forcing frequency (Zetler 1971).  Nonlinear interactions within the water 
body also transfer energy into harmonic frequencies, as shown in numerous studies of tidal 
motion.  In two-dimensional, depth-averaged horizontal flow, the quadratic bottom stress, 
advection, and nonlinear continuity terms generate response harmonics because they are 
nonlinear with respect to the current velocity, water-surface elevation, or both.  

 A central consideration in understanding wind-induced water motion and its harmonics 
is that a water body is locally forced over its entire surface.  In contrast, the tide must 
propagate from a connection to the ocean and is damped by friction as it traverses the bay 
or estuary.  Thus, a distinction between wind and tide is that wind is a local forcing whereas 
the tide is a boundary forcing.  The relative strength of terms in the equations of motion is, 
therefore, different.  

 The sea breeze fluctuates with a frequency of 1 cpd (cycle per day) that is close to 
frequencies of the diurnal tidal constituents (K1 O1, S1, and others).  Similarly, higher 
harmonics of the water motion induced by sea breeze (wind harmonics) lie at frequencies 
near the higher harmonics of the diurnal tidal frequencies.  Thus, wind harmonics can be 
obscured by tidal motion and not easily detected.  Conversely, tidal constituents must be 
calculated carefully if wind harmonics are present because they introduce similar motion 
not of gravitational origin.  In embayments where the tidal amplitude is small, the sea 
breeze can contribute significantly to the diurnal variance of the water surface and current.  
This situation is common along the coast of Texas, where the strong predominant southeast 
wind and sea breeze can dominate the tide in producing setup and setdown in its numerous 
shallow estuaries and bays (Collier and Hedgpeth 1950).  Militello (2000) and Militello and 
Kraus (2001) examined sea-breeze-induced motion at Baffin Bay, Texas, a large, non-tidal 
water body.  Kraus and Militello (1999) document along-axis oscillations in water level 
exceeding 0.6 m in response to periodic fronts passing East Matagorda Bay, Texas.  

 This paper introduces a new closed-form analytical solution of the one-dimensional 
(1D), depth-averaged linearized momentum and continuity equations that incorporates 
linear bottom friction and the non-linear wind stress.  The analytic solution describes 
linearized wind-forced motion in a 1D basin with horizontal bottom as governed by water 
depth, basin length, bottom friction coefficient, wind speed, and fundamental frequency of 
the oscillatory wind.   

ORIGIN OF WIND HARMONICS 

 For focus of discussion and development of the analytic solution, a spatially uniform 
oscillatory wind blowing parallel to the x-axis is specified.  The wind speed is then given as 

  ( )0 sin σW w w t+=  (1) 

where w0 = speed of the steady wind, w = amplitude of the oscillatory wind, and σ =2π/T , 
in which T = period of the oscillatory wind.  A sinusoidal representation for the wind with 
T = 24 hr is a reasonable description of sea breeze and is implemented below. 
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 To demonstrate how harmonics are generated through wind forcing, for the special case 
W ≥ 0, the quadratic wind velocity is 

  ( ) ( )2 2 2 2
0 0

1 12 sin σ cos 2σ
2 2

W W W w w w w t w t= = + + −  (2) 

Eq. 2 contains three forcing components as a steady part, a fundamental diurnal frequency 
σ, and the first even harmonic (semi-diurnal frequency) 2σ of the fundamental.  For a pure 
oscillatory wind, w0 = 0, and the Fourier expansion of the quadratic wind velocity produced 
by Eq. (2) is 

 2

1
sin[(2 1)σ ]j

j
W W w A j t

∞

=
= −∑  (3) 

in which 

 8
π(2 3)(2 1)(2 1)jA

j j j
−=

− − +
 (4) 

Eq. 4 shows that harmonic frequencies generated by a pure oscillatory wind are odd 
multiples of the fundamental frequency.  Relative magnitudes of A2 and A3 to A1 are 1/5 and 
1/35.  

ANALYTICAL SOLUTION 
Equations of Motion 
 For a basin of uniform width and water depth h >> η (deviation of water surface from 
still water), the continuity and momentum equations of depth-averaged motion are 

 0uh
t x

∂η ∂+ =
∂ ∂

 (5) 

 0f DaC u u C W Wu uu g
t x x h h

ρ∂ ∂ ∂η+ + + + =
∂ ∂ ∂ ρ

 (6) 

where t = time, u = horizontal water velocity, g = acceleration due to gravity, Cf = 
coefficient of bottom friction, ρa  and ρ are the densities of air and water, respectively, CD = 
wind-drag coefficient, and W = wind velocity.  Militello and Kraus (2001) showed by 
scaling analysis of Eqs. 5 and 6 that the pressure gradient term is of the same order as the 
wind forcing and bottom friction terms, whereas the inertia and advective terms are 2-3 
orders of magnitude smaller than the wind forcing term for the stated conditions.   

 A 1D basin of length L with vertical walls and uniform still-water depth is considered 
(Fig. 1), over which an along-axis sinusoidal wind blows with spatial uniformity.  The 
governing equations are linearized, including omission of the advective term (which was 
shown to be small in the scaling analysis), to allow closed-form solution and to eliminate 
generation of response harmonics by nonlinear terms.  Although it is not the intent to 
compare the linear and non-linear models, the Lorentz approximation for estimating the 
value of the linear bottom friction coefficient CfL by the principle of equivalent work (Ippen 
and Harleman 1966) gives CfL = (8/(3π)) um Cf , where um is a representative value of the 
magnitude of the current.  The quantity CfL has dimensions of velocity.   
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Fig. 1.  Sketch of one-dimensional basin with wind forcing, t =0 

 The continuity and momentum equations (Eqs. 5 and 6) then become 

  η uh
t x

∂ ∂= −
∂ ∂

 (7) 

and 

 η fLCu g u F
t x h

∂ ∂= − − +
∂ ∂

 (8) 

where the wind forcing is represented by the function 

  ρ( )
ρ

a
D

W W
F F t C

h
= =  (9) 

for pure oscillatory wind specified by Eq. 1 with w0 = 0.  Although the wind-drag 
coefficient varies with the wind speed in some formulations, it is taken to be constant for 
this derivation, as is CfL.   

 From Lamb (1945), Ippen and Harleman (1966), and others, linear equation systems 
such as Eqs. 7 and 8 can be solved by differentiating Eq. 7 with respect to x and Eq. 8 with 
respect to t, then adding the resultant equations to eliminate η.  The one-dimensional 
inhomogeneous wave equation for u is obtained,  

  22tt t xx tu du c u F+ − =  (10) 

in which notation was simplified by defining d = CfL/(2h), and where c2 = gh.  The 
subscripts denote partial differentiation with respect to t and x.  The quantity d has the 
dimensions of frequency, and shows that the friction term in Eq. 10 decreases inversely 
with the depth.   

 For the idealized basin, the initial and boundary conditions on u are, respectively, 
u(x, 0) = ut(x, 0) = 0, and u(0, t) = u(L, t) =0.  The water surface is specified to be initially 
horizontal, and the wind begins blowing at t = 0.  Symmetry indicates that the problem can 
be solved over half the basin, for example, on [0, L/2].  In the solution procedure that 
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follows, the full interval [0, L] is chosen as the spatial domain, with symmetry about L/2 for 
u and anti-symmetry for η serving as checks of the solution.  

 A solution is sought of the form of a Fourier expansion  

  
1

(2 1)( , ) ( ) sin
N

n
n

n xu x t u t
L=

− =   
∑

π  (11) 

which is a normal-mode equation satisfying the lateral boundary conditions.  Substitution of 
Eq. 11 into Eq. 10 shows that the un satisfy the equation describing forced motion with 
damping, 

  2

1
( ) 2 ( ) σ

N

n tt n t n n n
n

u d u u F
=

+ + =∑  (12) 

with σn = (2n-1)πc/L  corresponding to odd normal modes.  Eqs. 3, 9, and 10 give 

  
1

cos(σ )
N

n nj j
j

F D t
=

=∑  (13) 

where σj = (2j-1) σ are the frequencies of harmonics forced by the quadratic wind stress and 

  2ρ4 σ
(2 1)π ρ

a
nj D jD C w A

n h
=

−
 (14) 

 The solution of Eq. 12 with the initial conditions depends on the relative values of σn 
and d, by which either underdamping (d < σn) or overdamping (d > σ) can occur.  Note that 
d contains the water depth and that the σn will have a wide range if a reasonable number of 
components (e.g., N = 7) is assigned.  Critical damping (d = σn) cannot occur in a practical 
situation for input values specified to one or two significant figures.  The formal solution 
given below for overdamping describes both the under- and overdamping situations for 
complex arguments of the exponential functions appearing in it. 

 The solution of the linearized shallow-water wave equations for the basin with an 
impressed wind blowing as W = w sin(σt) and with initial conditions of a flat water surface 
and boundary conditions of zero velocity is found to be, for the depth-averaged velocity, 

  
1 1

(2 1)π( , ) sin
N J

nj
n j

n xu x t u
L= =

  − =      
∑ ∑  (15) 

with the real part of  

  1 2λ λ
1 2 3 4cosσ sinσnj

t t
nj nj nj j nj jCu e C e C t C t= + + +  (16) 

where again, with d = CfL/(2h) and CfL a friction coefficient for linearized bottom stress, 

  
2 2

1

2 2
2

λ σ

λ σ ,

n

n

d d

d d

= − + −

= − − −
 (17) 
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2 2 2 2 2 2
1 2 2

2 2
2 1

2 2
3

4

ˆ
(σ σ ) σ (σ σ )

2 σ
ˆ (σ σ )

ˆ (σ σ )
ˆ2 σ

nj
nj n j n n j

n

nj nj nj n j

nj nj n j

nj j nj

D
C d d

d

C C D

C D

C d D

 = − − − + +
 −

= − − −

= −

=

 (18) 

  2 2 2 2 2
ˆ

(σ σ ) 4 σ
nj

nj
n j j

D
D

d
=

− +
 (19) 

 The water-surface elevation is given by integrating Eq. 7 with Eq. 15 for u to give 

  
1 1

(2 1)πη( , ) (2 1) η cos
N J

nj
n j

n xx t n
L= =

� � −� �= − � � � �	 
� �
� �  (20) 

with the real part of the following equation taken:   

  1 21 2 3 4λ λ

1 2

η ( 1) ( 1) sinσ (cosσ 1)
λ λ σ σnj

nj nj nj njt t
j j

j j

C C C C
e e t t= − + − + − −  (21) 

This solution describes linearized wind-forced motion in a 1D basin as governed by five 
parameters:  water depth, basin length, bottom friction coefficient, wind speed, and 
fundamental frequency of the oscillatory wind.  The solution includes the initial transients 
and possible mixed under-damping (d < σn) and over-damping (d > σn), depending on the 
normal modes, as can occur according to the values of λ1 and λ2.   

RESULTS 
Example Dynamics of Analytical Solution 

For examining properties of the analytic solution, the geometry of an idealized basin 
was established that approximated Baffin Bay, Texas (Militello and Kraus 2001), as L = 
29 km, h = 1 m, and CfL =0.009, upon which a spatially uniform sinusoidal wind was 
imposed with w = 10 m s-1 and CD = 0.0016.  Through trial runs, 3-digit reproducibility was 
obtained with four wind harmonics (J = 4) and nine normal modes (N = 9).  

The time series of η from Eq. 20 at x = L - 500 m and u from Eq. 15 at the middle of the 
basin are plotted in Fig. 2 for 3 days.  Day 0 was omitted to allow transients to disappear.  
The greatest variation in water level and velocity are experienced at the basin ends and 
middle, respectively.   

The water-surface elevation and current velocity contain complex structure through the 
presence of both wind-generated harmonics and normal-mode frequencies.  The spectra of 
η and u shown in Fig. 3 indicate strong motion at the fundamental frequency of 1 cpd and 
energy at the odd forced harmonics associated with the quadratic wind stress.  The peak at 
4.65 cpd is the first normal (seiching) mode of the basin.  The amplitudes of the harmonics 
can also be obtained from the solutions, and Eqs. 15 and 20. 
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Fig. 2.  Calculated time series of water-surface elevation (WSEL) and current, 1-m depth 
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Fig.3.  Spectra of water-surface elevation and current, 1-m depth 

 Figures 4 and 5 respectively plot the water level and velocity along the basin at hourly 
intervals for the first 12 hr after the start of Day 1.  Because the motion of the water level 
and current are complicated (Fig. 2), changes at a fixed time interval are not regular.  The 
water level fluctuates between about ±0.4 m, and the velocity fluctuates between about 0.4 
and -0.3 m s-1 for this particular 12-hr interval.  At the location L/2, η is anti-symmetric and 
u is symmetric.  Also, the water surface along the basin exhibits some curvature, departing 
from a straight line that might be expected intuitively.  
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Fig. 4.  Selected water levels along the basin, 1-m depth 
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Fig. 5.  Selected current velocities along the basin, 1-m depth 

 To demonstrate other properties of the analytic solution, the depth in the previous 
example was changed to h = 2 m.  Time series of the water-surface elevation and current 
are plotted in Fig. 6 with corresponding spectra in Fig. 7.  These are analogous to Figs. 2 
and 3 for the situation of h = 1 m.  The responses (amplitudes) of both the water level and 
current speed are smaller for the greater depth because the wind must move more water.  
Also, the first normal mode is now located at 6.60 cpd.  As a consequence of the different 
normal modes, the time series differ for the two ambient depths.  

Action of Bottom Friction in Presence of Sea Breeze 

 With bottom friction acting, higher-mode frequencies damp more than lower modes. 
Damping of water-surface elevation amplitudes for the friction coefficient Cf ranging from 



 
 9                                        Kraus & Militello 

0 (no friction) to 0.02 (strong damping, as over a porous reef) are shown in Fig. 8 for the 
idealized basin.  Amplitudes are normalized by the no-friction value of the corresponding 
frequency.  Motions on the fundamental forcing frequency (1 cpd), the 1st and 2nd 
harmonics (3 and 5 cpd), and the first resonant mode (4.7 cpd) are present.  The curves for 
the fundamental and harmonic frequencies indicate steep damping for smaller values of 
friction coefficients, tapering to mild slopes with greater values of friction.  Curves for the 
harmonic frequencies approach near-zero slope with increased friction coefficient.  Motion 
at these frequencies is present, even at large friction values, because it is forced over the 
entire surface of the water body.  In contrast, the resonant frequency damps to near zero for 
even small values of friction, being a boundary-induced phenomenon.  
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Fig. 6.  Time series of water-surface elevation and current, 2-m depth 
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Fig. 7.  Spectra of water-surface elevation and current, 2-m depth 
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Fig. 8.  Normalized amplitudes for oscillatory wind-forced water level for friction coefficient 

ranging from 0 to 0.020. 

CONCLUSION 
 An analytical solution for an idealized 1D basin was developed to study the response of 
initially quiescent water to oscillatory wind as governed by the linearized equations of 
motion with quadratic wind stress.  The solution displays in compact form general behavior 
and dependencies of the physical processes, including generation of harmonics of the 
motion, damping, and resonance.  The solution can serve as a benchmark test for numerical 
models of the shallow-water equations to examine properties such as numerical damping, 
generation of spurious motions, symmetry, and accuracy.  It also provides a convenient 
procedure for making first-order estimates of wind-induced motion in enclosed water 
bodies such as bays, estuaries, lakes, and reservoirs.    
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